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Abstract

Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity

for application to future aircraft thermal protection systems (TPS), providing materials with higher
temperature capability, lower weight, and higher strength and stiffness than traditional materials. The

Thermal Protection Material Branch at NASA Ames Research Center has been making significant

progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's.
This presentation gives a general overview of the Ames Thermal Protection Materials Branch research

activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and
Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in

polymer precursors and ceramic coating processing. The presentation closes with a brief comparison
of maximum heat flux capabilities of advanced TPS materials.
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I Long Range Goal of the /Ames Thermal Protection Materials Branch
II III

To Provide Thermal Protection
Materials, Systems, and Analysis

Methods for Heat Shields of Entry,
Aerobraking and Hypersonic Cruise

Vehicles and Planetary Probes

THERMAL PROTECTION MATERIALS

AMES VEHICLE I_ GROUND/FLIGHT EXPERIMENTS I_ FLIGHTTPS
DEVELOPER

PAST: 1970-1982

• KEY SHUTTLE TPS
CONTRIBUTIONS:

LI2200'
FRCI-12*
RCG COATING*
AFRSI'*
GAP FILLERS*

• IN FLIGHT PROOF OF
CATALYTIC EFFECTS

ARC-JET TESTING FOR

SHUTTLE, GALILEO,
APOLLO, DOD VEHICLES

X-24B/C FIRST
SUPERSONIC FLIGHT TEST
OF TILE TPS

* AMES PATENT
"* TECH BRIEF

1982 - PRESENT

• NASP:
CMC & COATINGS TMP'S
GWP #93 & #95
ARC-JET TESTING

• LEAD CENTER FOR SEI
AEROBRAKE TPS

• 3 AFE EXPERIMENTS

• 30EX EXPERIMENTS

• PEGASUS FLIGHT EXP'S

• NEW MATERIALS AND TPS:
AETB*, TUFI*
TABI*, CFBI •
CMC DEVELOPMENT
TOP HAT*

• NUMEROUS APPLICATIONS
OF AMES TECHNOLOGY:
ATF, B-2, TITAN-IV

• NEW 4000°F + REUSABLE
CERAMICS AND TPS

• HOT STRUCTURE CMC TPS

• DURABLE ALL-WEATHER TPS

° ADVANCED ABLATORS:
- CERAMIC/POLYMER
- VOLUME REFLECTING

TPS FOR FUTURE PROGRAMS:
X-30, DELTA CLIPPER
HYFLEX, JSC FLIGHT EXP.
MESUR, NEPTUNE PROBE

CATALYTIC EFFECTS FOR
MARS ENTRY

NUCLEAR ROCKET REENTRY

ADVANCED TPS MODELING
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THERMAL PROTECTION SYSTEM DEVELOPMENT PROCESS

THERMAL RADIANT
TESTING

ANALYSIS

PLASMA ENTRY SIMULATION

MATERIALS DEVELOPMENT
AND IMPROVEMENT GROUP

MECHANICAL TESTING

J

I'\\ ADVANCED SPACE
VEHICLES

MATERIALS DEVELOPMENT
FLEXIBLE AND RIGID

Materials/TPS
Development

Projects

Materials/TPS
Testing

Materials/TPS
Analysis

I_ A Synergistic, Multi-disciplinary Approach

I_ Continual Research/Technology Development
Supports Projects
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[Projects /

NASA Programs

• SEI: Recent Langley "Aerobrake Assembly with Minimum
Accommodation" study performed by Lockheed baselined Ames
developed "TOP HAT" CMC/rigid tile TPS.

• Shuttle: Working with KSC, JSC, NASA HQ and Rockwell to fly
Ames developed TUFI TPS on the Orbiters in high erosion areas.

• MESUR: Performed initial TPS sizing and trades. Identified a
light weight silicon rubber TPS (SLA-561) which allows a 50%
increase in scientific payload.

• Pegasus: Teaming with Dryden and LaRC for boundary layer
cross flow transition experiment (scheduled to fly in FY92).
Constructing Pegasus Wing-Glove and PI for and TPS
performance evaluation experiment. Wing fillet heating
experiment flown on first two Pegasus launches.

• HYFLEX: Working with a multi-agency team to define vehicle.
Diboride leading edges and nosetip being evaluated.

• Wave-Rider: Discussions with McDonnell Douglas regarding
leading edge design.

NASP

• Responsibility for government work packages #93 and #95 for
arc-let testing and internal TPS insulation design.

• Both have been highly praised by NPO/JPO and Industry Leads
(i.e. General Dynamics, Rockwell, Pratt Whitney).

Do__._DD
• Delta Clipper: Cooperative research program being developed

with McDonnell Douglas and SDIO. Cooperative efforts
proposed in three areas:

1) TPS design and consultation

2) Arc-jet testing

3) Computational studies
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I Material/'l'PS Testing Areas |

• Arc-Jet Testing

Aerodynamic Heating Facility (20 MW)

- Interactive Heating Facility (60 MW)

- Panel Test Facility (20 MW)

• Material Characterization

- SEM, XRF, Optical Microscopes

- XRD, Large Sample TGA

- Dilatometer, Instron

- Infrared & Ultraviolet Spectrometers

ICP Mass Spectrometer (inorganic)

• Special Testing

Laser Time-of-Flight Mass Spectrometer (SALI)

Side Arm Reactor

l Material/TPS Analysis Areas II

• Computational Surface Thermochemistry

Surface heating and catalysis effects
(NSCAND, BLIMPK, LAURA, VSL, GASP)

Ablation, erosion, and shape change
computations (ASC, CMA, ACE)

• Computational Solid Mechanics

Multi-dimensional conduction/radiation
analyses (SINDA, TRASYS)

- Multi-dimensional thermal-stress analyses
(COSMOS)

• Computational Materials

- CVD/CVI Processing (GENMIX, NACHOS)

- Reflective TPS analyses

- Composite material properties (MATX)
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Advanced Material Fami!ie_

• Ceramic Matrix Composites

- Very-High Temperature Ceramics (HfB2 +SIC)
High Temperature, High Strength Ceramics (C/SiC)

- Polymer Precursors (Si/C/B fibers, tape casting)
- Ceramic coatinqs processinq

• Light Weight Ceramic Insulations

- Rigid Tiles (AETB, SMI, UltraLight)
- TABI and CFBI Flexible Blankets

- Aerogel Studies

• Light Weight Ablators

- Rigid Ceramic Insulation with a Polymer Filler
• Surface Coatings

- Low Catalytic Efficiency, High Emissivity
- Reflective

I Diboride Materials |

• Manlabs Inc. (Cambridge MA) tested and compiled a data
base on a large number of refractory materials in the 60's
and early 70's

• The diborides of zirconium and hafnium (ZrB2 and HfB2)
were found to be the most oxidation resistant, high
temperature materials in the study, e.g.

Arc testing of ZrB2 + 20 v/o SiC

surface temp. 2510 C, stagn, press. 1.0 arm,
stagn, enthalpy 11.6 kJ/gm

recession: 0.66 ram/2 hrs

equivalent graphite recession: 30 cm 1
equivalent SiC recession: 45 cm I

"These results illustrate the reuse capability of the boride composites... This
capability is unrivaled by any other material system." - Quole from Dr. Larry
Kaufman, Principal Investigator in the Manlabs Studies
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I
i Research Highlights for FY91 i

Very-High Temperature Ceramics

• Phase I arc-jet testing completed

• 19 reinforced Zr and Hf based ceramics tested (from
Manlabs, Cerac, Lanxide, SAIC)

• Arc-jet data in good agreement with earlier Manlabs
results

• Over 2 times RCC maximum heat flux capability
demonstrated

• 2200°C+ (4000°F+) capability demonstrated

• Successfully applied ZrB2 coatings to RCC using RF
sputtering

• Phase II testing of disk samples, nosetip and leading
edge components currently in progress
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Table 1: Sample Components

Advanced Refractory Composites (Testing F'rogram Phase II)

10/28/91

Geometry/Dimension QuantitySample

Component

Manl.abs-CI

Manl.abs-C2

Manl.abs-C3

Manl.abs-I.E

Manl.abs Ill
Maul.abs 112

Manlmbs-113

Manl.abs-NT

Manl.abs-S

Cerac-S

Cerac C

ACR CI

ACR C2

ARC-CI

ARC-C2

(]ACI

(]A-C2

SAIC-CI

SAIC-C2

Total

Matrix/

Rein forcement

ZrB2/SiCp

ZrB2/SiCpi

ZrB2/SiCpl+Cft:h

ZrB2/SiCpt

IIfB2/SiCI_I

IfB2/SiCI_I

ItB2/SiCpl

IIfB2/SiCpt

ZrB2/SiCp

Zrl]2/SiC o

ZrB2/SiC 0

Zr I] 2/S iCo+Cfc

Zrl] 2/SiCp+SiCf,:
ZrB2 Coated RCC

ZrB2 Coated RCC
RS llfB2 Coated

C/C

111O2 Coaled RS-
IIfB2 Coaled C/C

ZrI_,2/SiC+CIc

ZI 1_,2/SiC* Cfl.

Coupous/2.8"Dia. x 0.25"

Coupons/2.8"Dia. x 0.25"

Coupons/2.8"Dia. x 0.25"

Leading Edgc/O.75"Dia. x
2.75"

Ilemisphere/[].7OO"Radius

Ilemisphere/0.500" Radius

tlemisphere/0.125" Radius

Nose Tip/0.141"Radius on

5.25 Deg. Cone Ilalf Angle
Skirt

5.25 Deg. Cone Ilalf Angle
Skirt

Coupons/2.8"Dia. x 0.25"

Coupous/2.8"Dia. x 0.25"

Coupons/2.8"Dia. x 0.25"
Coupons/2.8"Dia. x 0.25"

Coupons/2.8"Dia. x 0.25"

Coupons/2"Dia. x 0.25"

Coupons/2"Dia. x 0.25"

Coupons/2.8"Dia. x 0.25"

Coupons/2.8"Dia. x 0.25"
35

Subscripl dcfinitiom,: p : parliculate, pl : plalelet, fc = continuous

fiber, fch - clloppcd fiber
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l Material/TPS Development Areas
I I

Advanced Material Families

= Ceramic Matrix Composites

Very-High Temperature Ceramics (HfB2 +SIC)
I " High Temperature, High Strength Ceramics (C/SiC) I

Polymer Precursors (Si/C/B fibers, tape casting)
Ceramic coatings processing

•. Light Weight Ceramic Insulations

Rigid Tiles (AETB, SMI, UltraLight)
TABI and CFBI Flexible Blankets

- Aerogel Studies

,, Light Weight Ablators

- Polymer Filler + Rigid Ceramic Insulation
• Surface Coatings

- Low Catalytic Efficiency, High Emissivity
Reflective

Ceramic Matrix Composites

• DuPont and SEP fabricated Nicalon, Nextel, and carbon fiber
reinforced SiC matrix composites evaluated for aerothermal and
mechanical performance

• Pre and post-test mechanical property characterization showed
that carbon fiber reinforced materials have little degradation after

arc-jet exposure to 2700°F for ten cycles of ten minutes each

• DuPont material found to be equivalent or better (particularly in
quasi-isotropic configuration) than SEP material.

• Mass loss and mechanical property retention results in very good
agreement with radiative heating testing data recently reported by
General Dynamics

• New Ames developed "TOP HAT" CMC/rigid tile TPS, using Ames
CVD/CVI fabricated C/SiC CMC, shown to survive multiple arc-jet
exposures to 3100°F
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CERAMICMATRIXCOMPOSITESPROGRAM

"TOP HAT" Assembly
Edge View

TOP HAT

Average Tensile Strength vs. Temperature

Pre-aeroconvective Exposure (U)
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Average Tensile Strength (70 =F, Ar) ol Carbon,'SiC,
Nextel/SiC, and SiC/SiC vs. Time of Aeroconveclive
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7OF

60r__ [] (3 []

_, SOl-'_ r-Jc,,,sic

L ('_ Nexlel/SiC
¢_ 40 ,_ SiC'SiC

30

0 10 20 30 40 50 60 70 80 90 100

Time of exposure (ram)
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TOPHAT Thermal Protection System
Arc-Jet Model Design
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TOP HAT MODEL

TI, T2: Tungcten TC
T3, T4, Ts: Pt/Pt Rd (13%)

Volume of model above the

aluminum back plate: 1059 cu m

System Densily: 14.7 lbslft 3

--- _t2-

Aluminum backplate:

41 gm = 0.09 lbs
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TOP HAT

Thermal Protection System

Ceramic matrix composite

High temperature felt

\\

Rigid reusable insulation _
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iMaterial/TPS Development Areas /

Advanced Material Families

• Ceramic Matrix Composites

- Very-High Temperature Ceramics (HfB2 +SIC)

- Hig h Temperature, High Strength Ceramics (C/SiC)

- Polymer Precursors (Si/C/B fibers, tape casting)Ceramic coatings processing

• Light Weight Ceramic Insulations

- Rigid Tiles (AETB, SMI, UltraLight)
- TABI and CFBI Flexible Blankets

- Aerogel Studies

• Light Weight Ablators

- Polymer Filler + Rigid Ceramic Insulation
• Surface Coatings

- Low Catalytic Efficiency, High Emissivity
- Reflective

58



l Research Highlights for FY91

Polymer Precursors

• Low oxygen content Si/C/B polymers synthesized

• UV air and non-oxygen cure procedure demonstrated

• Ceramic fibers show tensile strength retention to 1300°C

• Successfully synthesized Zircon/ZrB2/SiC 20 mil tapes
using a combination of tape casting and sol-gel processing

Ceramic Coating Processing

• Successfully applied thin (20 micron) coatings for ZrB2 to a
SiC substrate using RF sputtering

• Planning initial trials for plasma spraying ZrB2 and ZrB2/SiC
using a constricted arc-jet

TENSILE STRENGTH OF SiC, Si-C-N and SI-C-B FIBERS

AS A FUNCTION OF FIBER DIAMETER
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TEMPERATURE EFFECTS ON FIBER TENSILE

STRENGTH IN AIR

300

200

150

too

_ so
w 50
o

_ 40

30

2O

10

0

Gage length = 9 inches

o--

Nicalon SiC fiber

(G. Simon, et al.)

t

jx

Si-C-B fiber

I I I I I .... 1__

400 800 1200 1600

Test temperature (°C)

59



Maximum Cold Wall Heat Flux Computations

For one-dimensional, radiative equilibrium, the maximum cold
wall heat flux, Qcw, can be computed from the maximum material
use temperature, Tmax, by:

4
Qcw = E(_Tmax/(1 - Hw/Hr)

where E is the emissivity and Hw is the wall gas enthalpy at Tmax,
and Hr is the local recovery enthalpy

Surface catalytic effects all roll into the value of Hw

With values for the material maximum use temperature and
emissivity, Qcw can be easily computed

Material Maximum Use Emissivity
Temp. (C)

HfB2+SiC 2480 0.62
SiC (or Coated C-C) 1760 0.76
Rigid Tiles 1540 0.85
Coated Niobium 1530 0.65

[Maximum Cold Wall Heat Flux Computations

Qcw for a Fully Catalytic Surface*

i J A _ J i J , , _ , ,1000 ! [ .... t , , I I

0

100 1

! lolled Niobit_m

10 15 20 25

Flight Mach No

30

* Hw evaluated assuming chemical equilibrium
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I Maximum Cold Wall Heat Flux Computations _1
I II

O

1000

100

Range of Catalytic Effects on Qcw for SiC*
, , , I , , = l = _ , , I , , , , I , , , ,

Altitude 100 kft

i"', Nitrogen Dissociation

_;. Oxygen Dissociation Lobe

_', Lobe

"*...o. .... J ..........................

SiC (or Coaled C-C]

...... Non-equilibrium lirnitJEquilibrium limil

' ' I ' ' ' I ' ' ' t ' ' ' I

10 15 20 25

Flight Mach No

* Hw evaluated varying from equilibrium to
maximum non-equilibrium value

3O
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